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ABSTRACT: Amino acid sequences are known to constantly mutate and diverge unless there is a limiting 

condition that makes such a change deleterious. The few existing algorithms that can  be applied to find such 

contiguous approximate pattern mining have drawbacks like poor scalability, lack of guarantees in finding the 

pattern, and difficulty in adapting to other applications. In this paper, we present a new algorithm called  

Constraint  Based  Frequent Motif Mining (CBFMM). CBFMM is a flexible Frequent  Pattern-tree-based 

algorithm  that  can be used to find frequent patterns with a variety of definitions of motif (pattern) models. They 

can play an active role in protein and nucleotide pattern mining, which ensure in identification of potentiating 

malfunction and disease. Therefore, insights  into  any aspect of the repeats – be it structure, function or 

evolution – would prove to be of some importance.  This study aims to address the relationship between protein 

sequence and its  three-  dimensional structure, by examining if large cryptic sequence repeats  have  the  same  

structure. We have tested the proposed algorithm on biological domains. The conducted comparative study 

demonstrates the applicability and effectiveness  of  the  proposed  algorithm. 
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I. INTRODUCTION 
The approximate subsequence mining problem is of particular importance in computational biology, 

where the challenge is to detect short sequences, usually of length 6-  15, that occur frequently in a given set of 

DNA or protein sequences. These short sequences  can provide clues regarding the locations of so called 

“regulatory regions,”  which  are important repeated patterns along the biological sequence. The repeated 

occurrences of these short sequences are not always identical, and some copies of these sequences may differ 

from others in a few positions. A repeat is defined as two or more contiguous segments of amino acid (three or 

more) residues with identical and similar sequence. When such repeats are in high-complexity regions, they are 

called „cryptic‟ [9]. Although low-complexity repeats are essential for evolutionary analysis and comprise a 

large section of the eukaryotic genome, high-complexity repeats are usually associated with a particular 

structure or function. This  study considers large cryptic repeats comprising eight or more residues, as [26] fixed  

the  length of a moderate-sized repeat as being between five and eight amino acids. The study of repeats is 

crucial because all but 5–6% of the high eukaryotic genome is repetitive  [25]. Internal protein repeats are 

observed to be associated with structural motifs or domains. It is evolutionarily more „economical‟ to evolve 

complex structures such as multiple domains by using „modular plug-ins‟ [22] to fulfill a specific function. 

Furthermore, longer repeats  normally act to enhance the stability of the native fold of the protein and, while 

small repeats interact with each other, larger repeats may either interact or remain isolated like beads on a string 

[22]. Three prominent reviews on repeats are those of [22], [11] and [33], and they concentrate on the 

relationship between structural repeats and their primary structure along with the characteristics of protein 

families. In [33] discuss the evolution  of  repeats  as  modules in the proteins. It is mentioned that the number of 

repeats in a protein can vary between proteins, implying that the loss or gain of repeats is very rapid in 

evolution. 

The remainder of the paper is organized as follows: Section 2 presents related works  and Section 3 

describes our model. In section 4, we  present optimization strategy for our  model and in Section 5 contains 

our experimental results. Section 6 contains our conclusions. 

 

II. PREVIOUS WORK 
There is a vast amount of literature on mining databases  for frequent  pattern  [30],  [17], [47]. The 

problem of mining for subsequence was introduced in [29].  Subsequence mining has several applications, and 

many algorithms like [23], [48], and [36] have been proposed to find patterns in the presence of noise. However, 

they primarily focus on subsequence mining, while we focus on contiguous patterns. A host of techniques have 

been developed have been developed to find sequence in a time series database that are similar to a given query 

sequence [29], [3], [31], [49]. The existing algorithm [5], [14], [20], [42], [24] requires the user to specify the 

repetition and patterns occurring  with  that  repetition,  otherwise which look for all possible repetitions in the 
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time series. Some algorithms are classified based on the detection type of repetition for symbol, sequence or 

segment. Another algorithm that finds frequent trends in time series data was proposed in [1]. However, this 

algorithm is also limited to a simple mismatch based noise model. In addition, this is a probabilistic algorithm, 

and is not always guaranteed to find all existing patterns. The algorithms specified in [34], [35], [39], [13], looks 

for all possible repetitions by considering  the range. COVN [34] fails to perform well when the time series 

contains  insertion  and deletion noise. WARP [35] can detect segment repetition; it cannot find symbol or 

sequence repetition. Sheng et al. [6], [8] developed algorithm based on ParPer [21] to detect repeated patterns in 

a section of the time series; their algorithm requires the user to  provide  the  expected repetition value. COVN, 

WARP and ParPer are augmented to look for all possible repetitions, and which last till the very end of the time 

series. Cheung [7] used FP tree similar  to STNR [13] which is not beneficial in terms of growth of tree. Huang 

and Chang [28] and STNR [13] presented their algorithm for finding repeated patterns, with allowable range 

along the time axis. Both finds all type of repetition by utilizing the time  tolerance  window and  could function 

when noise is present. STNR [13] can detect patterns which are repeated only    in a subsection of the time 

series. Repeated check in STNR last for all the positions of a particular pattern, which in our algorithm is been 

reduced. 

Several   approaches   described  in  the  literature  handle   structured   motif  extraction problem [3], 

[2] and repetition among subsection of the time series. However, our approach described in this paper is capable 

of handling both motif extraction and reporting all type of repetition. In this paper, we present a flexible 

algorithm that handles general extended structured motif extraction problem and uses CBFMM to build 

Consensus tree. CBFMM is capable of reporting all types of repetitions with or without the presence of noise in 

the data    up to a certain level. We believe that this is an interesting problem since it allows mining for useful 

motif patterns with all type of repetition,  without requiring specific knowledge about  the characteristics of the 

resulting motif. In this paper, we present a new model that is very general and applicable in many emerging 

applications. We demonstrate the power and flexibility of this model by applying it to data sets from several real 

applications. We describe   a novel motif mining algorithm called CBFMM that uses a concurrent traversal of 

FP trees to efficiently explore the space of all motifs. We present a comparison of CBFMM with several existing  

algorithms  (COVN  [34],  WARP  [35],  STNR  [13],  ParPer[21]).  CBFMM  never misses any matches (as 

opposed to some of these methods that apply heuristics). In fact, we show that CBFMM is able to identify many 

true biological  motifs that existing algorithms  miss. We show that our algorithm is scalable, accurate, and often 

faster than existing methods by more than an order of magnitude. We present an algorithm that uses  CBFMM  

as  a  building block and can mine combinations of simple approximate motifs under relaxed constraints. 

 

III. CONSTRAINT BASED FREQUENT MOTIF MINING (CBFMM) 
Our algorithm involves two phases. In the first phase, we build the Frequent Pattern (FP) tree for the 

biological data and in the second phase, we use the FP tree to calculate the repeat of various patterns in the 

biological data. One important aspect of our algorithm is redundant period pruning, i.e., we ignore a redundant 

period ahead of time. As immediate benefit of redundant period pruning, the algorithm does not waste time to 

investigate a repeat which has already been identified as redundant.  This saves considerable time and also 

results  in reporting fewer but more useful repeats. This is the primary reason why our algorithm, intentionally, 

reports significantly fewer numbers of repeats without missing any existing repeats during the pruning process. 

A FP tree for a string represents all its suffixes; for each suffix of the string there is a distinguished path 

from the root to a corresponding leaf node in the FP tree. Given that a time series is encoded as a string, the 

most important aspect of the FP tree, related to our work, is    its capability to very efficiently capture and 

highlight the repetitions of substrings within a string.  The path from the root to any leaf represents a FP for the 

string. Since a string of   length n can have exactly n suffixes, the FP tree for a string also contains exactly n 

leaves.  Each edge is labeled by the string that it represents. Each leaf node holds a number that represents the 

starting position of the suffix yield when traversing from the root to that leaf. Each intermediate node holds a 

number which is the length of the substring read when traversing from the root to that intermediate node. Each 

intermediate  edge  reads  a  string (from the root to that edge), which is repeated at least twice in the original 

string. These intermediate edges form the basis of our algorithm presented in Appendix section. 

The approach we take in CBFMM explores the space of all possible models. In order 

to carry out this exploration in an efficient way, we first construct FP trees: a FP tree on the actual data 

set that contains counts in each node (called the data TRIE tree),  this  set  is typically the set of all strings of 

length L over the alphabet. As we describe below, the model  FP tree helps guide the exploration of the model 

space in a way that avoids redundant work. The data FP tree helps us quickly compute the support of a model 

string. Recall that a FP tree with counts is merely a FP tree in which every node contains the number of leaves in 

the sub tree rooted at that node. In other words, every node contains the number of occurrences of the string 

corresponding to that node. CBFMM then explores the model space by traversing this (conceptual) model FP 

tree. Using the FP tree on the data set, CBFMM computes support at various nodes in the model space and 
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prunes away large portions of the model space that are guaranteed not to produce any results under the model. 

This careful pruning ensures that CBFMM does not waste any time exploring models that do not have enough 

support. The CBFMM algorithm simply stops when it has finished traversing the model  FP  tree  and  outputs 

the model strings that had sufficient support. 

 

As mentioned above, we utilize the consensus tree node with its pointer for repetition detection 

algorithm. Our algorithm is linear-distance-based; we take the  difference  between any two successive position 

pointers leading to Difference vector, represented in Difference Matrix (Diff_matrix). Diff_matrix is not kept in 

the memory but this is considered only for the sake of explanation. Fig. 1 presents how the Diff_matrix is 

derived from the position pointers  of a particular node. From the matrix the repetition is represented by (S, K, 

StPos, EndPos, c), denoting the pattern, period value, starting position and ending position, and number of 

occurrences respectively for a particular consensus node (which denote a pattern). CBFMM algorithm scans the 

difference vector starting from its corresponding position (Pos), and increases the frequency count of the period 

(K) if and only if the difference vector value is repeated regard to the StPos and K. Algorithm 1 in Appendix 

section formally represent the formation of Diff_matrix form consensus node pointers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Difference Matrix calculation for „ab‟ time series pattern from suffix tree node pointers 

 

The noise- resilient features in repetition detection in presence of noise, is presented  in [12] and [13]. 

Three types of noise generally considered in time  series  data  are replacement, insertion, and deletion noise. In 

order to deal with this problem, [13] used the concept of time tolerance into the repetition detection process. The 

idea is that repeated occurrence can be drifted within a specified limit called time tolerance (denoted as tt),  

which   is utilized in CBFMM algorithm. The CBFMM algorithm with time tolerance is presented in Appendix. 

CBFMM algorithm calculates all patterns which are repeated starting  from  any  position and 

continues till the end of the time series or till the last occurrence of the pattern.  Our algorithm can also find the 

repeated patterns within a sub section of the time series.  FP  tree node which contains pointers (pos) accessed as 

a continuous pattern for Diff_matrix calculation. Such types of repetition calculation are very useful in real time 

DNA  sequences and in regular time series. The existing algorithms [13] do not prune or  prohibit  the  

calculation of redundant repeats; the immediate drawback is reporting a huge number  of repeats, which makes 

it more challenging to find the few useful and meaningful repeated patterns within the large pool of reported 

periods. Our algorithm reduces the number of comparison of pointers which are used for calculation periodicity 

presented in Appendix(Algorithm 2). We empowered to use p periods only one time for each and every 

position pointers from that Diff_matrix is calculated. Diff_matrix is able to assist in finding repetition  for every 

starting position with different p periods. Our algorithm not only saves the time of   the users observing the 

produces results, but also saves the time for computing the repetition   by the mining algorithm itself. 

The first paragraph under each heading or subheading should be flush left, and subsequent paragraphs 

should have a five-space indentation. A colon is inserted before an equation is presented, but there is no 

punctuation following the equation. All equations are numbered and referred to in the text solely by a number 

enclosed in a round bracket (i.e., (3) reads as "equation 3"). Ensure that any miscellaneous numbering system 

you use  in  your  paper cannot be confused with a reference [4] or an equation (3) designation.  

 

IV. OPTIMIZING STRATEGIES 
There are some optimization strategies that we selected for the  efficient  implementation of the 

algorithm. These strategies, though simple, have improved  the  algorithm efficiency significantly. We do not 

include these into the algorithm pseudo code  so as to keep it simple and more understandable. Some  of these 

strategies are briefly mentioned  in the text below. 

1. Recall that each edge connecting parent node v to child node u has its own occurrence vector that contains 

values from leaf nodes present in the sub tree rooted at u. Accordingly, edges are sorted based on the 
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number of values they have to carry in their occurrence vectors; and edges that qualify to be processed in 

each step of the algorithm are visited in descending order based on the size of their occurrence vectors. This 

is beneficial as we calculate the repeats at  each intermediate node, and we need to sort the occurrence 

vector  at each intermediate node. Processing edges (indirectly) connected to the largest  number of  leaf 

nodes first will lead to better performance  because  this will mostly decrease the amount  of work required 

to sort newly formed occurrence vectors. 

2. We do not physically construct the occurrence vector for each intermediate edge as that would mostly result 

in huge number of redundant sub vectors. Rather, a single list of  values is maintained and each 

intermediate edge keeps the starting and ending index positions of its occurrence list, and sorts only its 

concerned portion of the list. As the sorting might also require a huge number of shifting of elements, we 

maintain the globally unified occurrence vector as a linked list of integers so that the insertion and deletion 

of  values do not disturb  large part of the list. 

3. Repeated subsequence  detection at the first level (for edges directly connected to   the leaves) is generally 

avoided because experiments have shown that in most cases, the first level does not add any new repeat. 

This is based on the observation that in time series repetitions patterns mostly consist of more than one 

symbol. This step alone improves the algorithm efficiency significantly. 

4. Intermediate edges (directly or indirectly) connected to significantly small  number  of leaves can also be 

ignored. For example,  if the sub tree rooted at the child node connected  to an edge contains less than 1 

percent leaves, there is less chance to find a significant repetitions pattern there. This leads to ignoring all 

intermediate edges (present  at  deeper  levels) which would mostly lead to multiples of existing repeats. 

Experiments have shown that, in general, this strategy does not affect the output of the  Subsequence  

detection  algorithm. 

5. Very small repeats (say less than five symbols) may also be ignored. Repeats which are larger than 30 

percent (or 50 percent) of the series length are also ignored so that the infrequent patterns do not pollute the 

output. We also ignore repeats which start from or after index position n/2 , where n is the length of the 

time series. Similarly,  intermediate edges which represent the string of length >n/2 are also ignored; that is, 

we  only  calculate  repetitions for the sequences which are smaller than or equal to half the length of the 

series. 

6. similarly, repeats smaller than edge value (the length of the sequence so far) are ignored. For example, in 

the series abababab$, if the edge value is 4 then we do not consider the  repeat of size  2, which would 

otherwise mean that abab is repeated with p = 2, st = 0;   this does not make much sense; rather the case 

should be expressed like abab is repeated with   p = 4, st = 0. 

7. The collection of repeats is maintained with two-levels indexing; separate index is maintained on repeat 

values and starting positions. This facilitates fast and efficient search of repeats because we check the 

existing collection of repeats a number of times. It is worth mentioning that the strategies outlined in points 

3 and 4 are optional and can be activated according to the nature of the data, its distribution, and the 

sensitivity of the results. 

The  proposed algorithm requires only a single scan of  the  data in order to construct  the  FP tree; and 

produces all patterns with length ≥ 2. CBFMM performs many comparisons  for comparison of two Diff_matrix 

values.  The complexity of processing a Diff_matrix vector of length n would be O (N
2
). The proposed 

algorithm depicts the Order of Growth is O (N
2)

 complexity. The length of periodic patterns is independent of 

the size of the time series. The length of frequent patterns is independent of the time series length [13]. The  cost  

of  processing k levels would be O (k. N) because each k ≤ N, hence the sum of the size of all comparison in 

Diff_matrix, and the worst case complexity if processing a level is O (N
2
). To analyze the space complexity of 

the FP tree will be gained  because  we  produce  only one  copy of pattern at each time, the maximal number of 

generated nodes at ith level will not surpass N( L-i+1). The auxiliary storage used for running the subroutine is 

bound by O (N(L- i+1)) as well. Therefore, the total space complexity of FP tree is O ( N×L ). 

 

V. EXPERIMENTAL EVALUATION 

A. Experiment with Biological Data 

The human genome sequence was downloaded from the National Centre of Biotechnology Information 

(NCBI) ftp site. To identify the corresponding three-dimensional protein structures of the human genome 

available in the Protein Data Bank (PDB), every sequence of the NCBI dataset was used as a query sequence 

against all the protein sequences available in the PDB using PSI-BLAST [44]. A 90% sequence cut-off was 

used. Using this procedure, a total of 3136 non-redundant structures from Homo sapiens was obtained, which 

comprised 5796 protein chains. This study makes extensive (and exclusive) use of the  algorithm CBFMM to 

find internal sequence repeats. CBFMM was developed to find internal repeats within a sequence; it aligns the 

sequence on the X and Y axes. Next, it finds the suboptimal alignments and, finally, it displays the repeat along 

with  the  location  after  weeding out repeats that are merely subsets of larger repeats. After the repeats were 
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found, a web server, three-dimensional structural superposition (3dss) [27] was used to superimpose the three-

dimensional structures of the repeats and obtain the  structural  alignment.  Information about the protein was 

obtained from the Protein Structure Analysis Package (PSAP) [4]; and necessary three-dimensional atomic 

coordinates for the protein  molecules  used in the present study were obtained from the anonymous FTP server 

maintained at the Bioinformatics Centre, Indian Institute of Science, Bangalore, India. Further calculations and 

necessary analyses were carried out using locally developed Perl scripts. 

CBFMM find all Cryptic repeats comprising eight or more amino acid residues are included. Out of the entire 

dataset, only 19 proteins were found to have 38 identical sequence repeats (Table 1). Out of the 38 large cryptic 

identical repeats found (Table 1), only two did   not superimpose (from PDB-ids 1JBQ and 1FYH) since the 

atomic coordinates are missing in their PDB file. In fact, it is intriguing that although large-module repeats 

ought to exist in the proteins, none apart from the one in interferon-γ (PDB-id 1FYH) have remained so highly 

conserved with respect to the sequence.  It is  likely that identical and similar repeats serve  some useful 

biological function, such as activity or scaffolding. This is supported by the fact that the amino acid sequence is 

highly conserved only in the case  of some exacting function    of the structure of the protein. An example of this 

can  be  seen  in  ice-binding β-sheets of insect anti-freeze protein [50]. Proteins with repeats conserved across  

species  are  under  strong purifying selection [26]. Thus, large conserved repeats have properties of selectively 

conserved rather than neutral sequences. 

 

Table 1 Large identical repeats from the non-redundant dataset of Homo sapiens proteins. 

 

 
 

Table  2: Repeated Pattern Found in P14593 

Per stpos StPosMod EndPos confidence pattern repetitions 

4 312 2 345 0.66 d 5 

4 321 0 469 1 gn 66 

4 344 3 489 0.33 agn 64 

4 367 2 480 0.85 aagn 58 

 

The  two  protein  sequences  namely  P09593  and  P14593  can  be  retrieved  from the Expert  

Protein  Analysis  System  (ExPASy)  database  server  (www.expasy.org).The  protein sequence P09593 is S 

antigens protein in Plasmodium falciparum v1 strain. S antigens are soluble heat-stable proteins present in the 

sera of some  infected individuals.  The  sequence of  S antigen protein is different among different strains [5]. 

Diversity in S antigen is mainly due   to polymorphism in the repetitive regions. It has been shown that the 

repeated sequence is ggpgsegpkgt with repetition of 11 amino acids, and this pattern repeats itself 19 times [37]. 

Some of the repeated patterns with repeat value of 11, found using CBFMM are presented in Table 2. Note that 

the index position starts from zero, as is the case with all the examples and experimental results reported in this 

paper. The second pattern is just a rotated version of the original pattern ggpgsegpkgt with 18 repeats while the 

first pattern starts (StPos = 104) just before the second pattern (StPos = 105) with 19 repeats. Thus,  our 

algorithm finds  not only  the  expected pattern of ggpgsegpkgt,  but also shows that its shifted version 

gpgsegpkgtg is  also repeated. The pattern exists in the middle of the series and is repeated contiguously. We 

have discovered 18 repeats of shifted pattern instead of 19, and the reason  is  that  the  repetition which starts at 
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position 282 is gpgsespkgtg; it is different from the expected pattern by one amino acid at position 6, where it 

has s instead of g. Since CBFMM does consider alternatives, we were able to detect that pattern. The first result 

also hints this by showing the pattern ggpgse repeating 19 times. The  shifted pattern gpgsegpkgtg,  detected by 

CBFMM,  is an interesting result that has not been reported in any protein database or in any other studies, we 

are investigating the practical significance of this discovery. 

 

B. Time Performance 

The time performance of CBFMM compared to ParPer, CONV, WARP and STNR in three 

perspectives: varying data size, repetition size and noise ratio. First, we  compare  CBFMM performance against 

ParPer [21], with synthetic data with varying data size from 1,00,000 to 10,00,000. The results are shown in 

Fig.2. ParPer only finds partial periodic patterns in the data namely symbol, segment and sequence patterns, and 

their complexity is O (N
2
). ParPer is not able to find repetition within subsection of a time series.  ParPer  show  

poor performance when the time series contain insertion and deletion noise; and  which might be prevalent in 

the time series. STNR [13], CONV [34] and WARP [35] are compared with size of the series varied from 

1,00,000 to 10,00,00,000. Fig.3 shows CBFMM performs better than WARP and STNR, but worse than  

CONV. The run  time complexity of  STNR and WARP  is O (N
2
), but for CONV is O (nlogn). CBFMM finds 

the repetition for all patterns in  continuous or subsection of a time series even in the presence of noise. 

CBFMM can find singular events if exists in time series. CBFMM performs better than WARP  and  STNR  

because CBFMM applies optimization strategies, mostly reduced the redundant comparison. This supports our 

algorithm that time complexity does not grow along with the size of time series. In case of varying repetition, 

we fixed the time series length and symbol set size. CBFMM performance is shown in Fig.4 with varying 

repetition size from 5 to 100. ParPer 

[21] and WARP [35] get affected as the repetition size increased. Time performance of CBFMM, CONV 

and STNR [13] remains same as it checks for all possible repetitions irrespective of the data set. 

 

Fig.2 Time performance of CBFMM with ParPer algorithm. 

 

Fig.3 Time performance of CBFMM algorithm with STNR, CONV and WARP 

 
(a) (b) 

Fig.4 Time behavior with varying repetition size 
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(a) Replacement Noise (b) Insertion noise 

 

(c) Deletion Noise (d) Insertion- Deletion Noise 

 

 
(e) Replacement-Insertion-Deletion Noise 

Fig.5 Time performance of CBFMM compared with STNR, CONV, ParPer, WARP, AWSOM, STB. 

 

C. Noise Resilience 

In the case of noise ratio, we used a synthetic time series of  length 10,000 containing    4 symbols with 

embedded repetition size of 10. Symbols are  uniformly distributed and the  time series is generated in the same 

way as done  in [35].  We used 5 combination of  noise,  i.e., replacement, insertion, deletion,  insertion-

deletion,  and  replacement-insertion-deletion. By gradually increased the noise ration from 0.0 to 0.5, the 

confidence at repetition of 10 is detected. The time tolerance for all the experiments is ±2. Fig.5 show that our 

algorithm compares well with WARP [35], STNR[13] and performs  better  than  AWSOM[43],  CONV[34], 

and STB[12]. For most of the combination of noise, the algorithm detects the repetition at the confidence higher 

than 0.5. The worst results are found with deletion noise, which disturbs the actual repetition. CBFMM shows 

consistent superiority  because  we consider asynchronous repeated occurrences which drift from the expected 

position within an allowable limit. This turns our algorithm a better choice in detecting different types of 

repetition. 
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VI. CONCLUSION 
In this paper, we have presented a novel algorithm that uses FP tree as underlying structure. The 

algorithm can detect symbol, sequence and segment repetition as  well  as  present the patterns that are repeated. 

It can also find repetition within a subsection of the biological data. It can detect the redundant repetitions which 

are pruned; before calculating confidence which in turn saves a significant amount of time. We took an initial 

step towards  and understanding the constraints in the conservation of amino acid sequences by analyzing large 

cryptic identical and similar repeats. CBFMM is also superior to motif  finding  algorithms used in 

computational biology. We also presented experiments which show that CBFMM can scale to handle motif 

mining tasks that are much larger than attempted before.  Our algorithm runs in O (k. N) in the worst case. In 

future, we are trying to extend our algorithm‟s working on online repetition detection. The algorithm to be 

experimented with streaming data using disk based tree [25]. 
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